Telegram Group & Telegram Channel
🔴 Как системно оценить качество предобработанных данных перед обучением большой языковой модели (LLM)

Перед тем как запускать дорогостоящий процесс обучения LLM, важно убедиться, что ваши данные чисты, релевантны и структурированы.

Оценка должна включать как количественные, так и качественные метрики.

➡️ Количественные метрики:

😶 Распределение токенов
Проверьте, не доминируют ли специальные токены, мусорные фрагменты или нерелевантные конструкции. Ожидаемые токены (например, ключевые слова доменной области) должны иметь разумную частоту.

😶 Покрытие словаря
Оцените, насколько хорошо охвачены часто встречающиеся слова и сабворды в вашей предметной области. Можно использовать частотный анализ на корпусе.

😶 Статистика по длине документов
Сравните среднюю и медианную длину документов с ожидаемыми значениями. Аномально короткие или длинные тексты могут быть ошибками разметки или дубликатами.

😶 Языковое распределение
В мультиязычном корпусе важно убедиться, что каждый язык представлен в правильной пропорции. Используйте модель определения языка (например, fastText или langid.py).

➡️ Качественные проверки:

😶 Ручная выборка документов
Просмотрите случайные примеры: содержимое должно быть осмысленным, без мусора, персональных данных или несоответствий тематике.

😶 Проверка дубликатов и шаблонов
Автоматически найдите повторяющиеся документы или шаблонные страницы (например, элементы веб-навигации).

😶 Оценка перплексии на тестовой модели
Можно применить небольшую предварительно обученную LLM к данным, чтобы вычислить перплексию. Высокая перплексия может сигнализировать о шуме или нерелевантности.

😶 Автоматическое обнаружение аномалий
Используйте кластеризацию или модели выявления аномалий, чтобы найти подозрительные группы документов.

Библиотека собеса по Data Science
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/ds_interview_lib/996
Create:
Last Update:

🔴 Как системно оценить качество предобработанных данных перед обучением большой языковой модели (LLM)

Перед тем как запускать дорогостоящий процесс обучения LLM, важно убедиться, что ваши данные чисты, релевантны и структурированы.

Оценка должна включать как количественные, так и качественные метрики.

➡️ Количественные метрики:

😶 Распределение токенов
Проверьте, не доминируют ли специальные токены, мусорные фрагменты или нерелевантные конструкции. Ожидаемые токены (например, ключевые слова доменной области) должны иметь разумную частоту.

😶 Покрытие словаря
Оцените, насколько хорошо охвачены часто встречающиеся слова и сабворды в вашей предметной области. Можно использовать частотный анализ на корпусе.

😶 Статистика по длине документов
Сравните среднюю и медианную длину документов с ожидаемыми значениями. Аномально короткие или длинные тексты могут быть ошибками разметки или дубликатами.

😶 Языковое распределение
В мультиязычном корпусе важно убедиться, что каждый язык представлен в правильной пропорции. Используйте модель определения языка (например, fastText или langid.py).

➡️ Качественные проверки:

😶 Ручная выборка документов
Просмотрите случайные примеры: содержимое должно быть осмысленным, без мусора, персональных данных или несоответствий тематике.

😶 Проверка дубликатов и шаблонов
Автоматически найдите повторяющиеся документы или шаблонные страницы (например, элементы веб-навигации).

😶 Оценка перплексии на тестовой модели
Можно применить небольшую предварительно обученную LLM к данным, чтобы вычислить перплексию. Высокая перплексия может сигнализировать о шуме или нерелевантности.

😶 Автоматическое обнаружение аномалий
Используйте кластеризацию или модели выявления аномалий, чтобы найти подозрительные группы документов.

Библиотека собеса по Data Science

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/996

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

Telegram and Signal Havens for Right-Wing Extremists

Since the violent storming of Capitol Hill and subsequent ban of former U.S. President Donald Trump from Facebook and Twitter, the removal of Parler from Amazon’s servers, and the de-platforming of incendiary right-wing content, messaging services Telegram and Signal have seen a deluge of new users. In January alone, Telegram reported 90 million new accounts. Its founder, Pavel Durov, described this as “the largest digital migration in human history.” Signal reportedly doubled its user base to 40 million people and became the most downloaded app in 70 countries. The two services rely on encryption to protect the privacy of user communication, which has made them popular with protesters seeking to conceal their identities against repressive governments in places like Belarus, Hong Kong, and Iran. But the same encryption technology has also made them a favored communication tool for criminals and terrorist groups, including al Qaeda and the Islamic State.

The STAR Market, as is implied by the name, is heavily geared toward smaller innovative tech companies, in particular those engaged in strategically important fields, such as biopharmaceuticals, 5G technology, semiconductors, and new energy. The STAR Market currently has 340 listed securities. The STAR Market is seen as important for China’s high-tech and emerging industries, providing a space for smaller companies to raise capital in China. This is especially significant for technology companies that may be viewed with suspicion on overseas stock exchanges.

Библиотека собеса по Data Science | вопросы с собеседований from de


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA